1 Using the 3D: Input File Specification

AFNI and its associated programs can read files in many different formats. Rather than
encode all different image formats in the software (which would require one format for every
programmer that ever lived), the “generic” image file format is an uncompressed contiguous
2D or 3D array of 8 bit unsigned bytes, 16 bit signed shorts, 32 bit signed ints, or 32 bit
floats.

The burden is on the user to specify exactly WHERE in the file the image data is stored.
This is done with the rather clumsy mechanism of prepending the necessary information
to each input filename.

An example:

3D:80:0:64:64:1:fred.001

Piece Meaning
3D: Indicates that this is a file of shorts.
80: Indicates to skip 80 bytes at the start of the file.
0: Indicates to skip 0 bytes at the start of each 2D
image within the file.
64: Indicates that the “x” dimension of each 2D image is 64.
64: Indicates that the “y” dimension of each 2D image is 64.
1: Indicates that there is only 1 2D image in this file.

fred.001 Indicates that the actual filename is “fred.001”.

If there were 10 such files, you could put them into a 3D block with the Unix command

cat fred.* > fred3d
This file could be read into to3d with the specification

3D:0:80:64:64:10:fred3d

Notice that the “80” has moved to the “per image header” slot, since each image has
the 80 bytes of header information attached. If there were only one 80 byte header for all
the data in this big file, then the appropriate specification would be

3D:80:0:64:64:10:fred3d
In general, the format for images of shorts is

3D:hglobal:himage:nx:ny:nz:fname for 16 bit input
3Ds:hglobal:himage:nx:ny:nz:fname for 16 bit input, swapped bytes
3Db:hglobal:himage:nx:ny:nz:fname for 8 bit input
3Di:hglobal:himage:nx:ny:nz:fname for 32 bit input
3Df:hglobal:himage:nx:ny:nz:fname for floating point input

where

hglobal = number of bytes to skip at start of whole file

himage = number of bytes to skip at start of each image
nx = x dimension of each image

ny =y dimension of each image

nz = number of images (at least 1)

fname = actual filename on disk to read

The “’ separators are required. The k-th image starts at BYTE offset
hglobal + (k+1)*himage + vs*k*nx*ny

in file ’fname’ for k=0,1,...,nz-1. Here, vs=voxel length=1 for bytes, 2 for shorts, 4 for ints
and floats.

As a special case, hglobal = -1 means read data starting at offset len-nz*(vs*nx*ny+himage),
where len=file size in bytes. In particular, this means that if you have a 64x64 image of
shorts in a file, you can read it with

3D:-1:0:64:64:1:filename

1.1 Reading a Number of Files, Method 1

This is clearly a rather clumsy method to use if you have a bunch of files in a funny format.
The count program (part of the AFNI package) and the C-shell backquote operator can be
combined to remove a little of the pain.

The count program simply generates strings of numbers. For example, the output of
“count -digits 3 5 177 is

005 006 007 008 009 010 011 012 013 014 015 016 017

“_digits 3” means to use 3 digits (at least); “5 17” means to count from 5 to 17. A more
complex use of count can attach a root to the beginning of each number: “count -digits 3
-root fred. 5 17”7 produces

fred.005 fred.006 fred.007 fred.008 fred.009 fred.010 fred.011 fred.012 fred.013 fred.014

fred.015 fred.016 fred.017

So, to read in these files, we would use the count command

count -digits 3 -root 3D:-1:0:64:64:1:fred. 5 17

which produces the output

3D:-1:0:64:64:1:fred.005 3D:-1:0:64:64:1:fred.006 3D:-1:0:64:64:1:fred.007
3D:-1:0:64:64:1:fred.008 3D:-1:0:64:64:1:fred.009 3D:-1:0:64:64:1:fred.010
3D:-1:0:64:64:1:fred.011 3D:-1:0:64:64:1:fred.012 3D:-1:0:64:64:1:fred.013
3D:-1:0:64:64:1:fred.014 3D:-1:0:64:64:1:fred.015 3D:-1:0:64:64:1:fred.016
3D:-1:0:64:64:1:fred.017

Finally, we need to get this string onto a command line. This is done by putting the
whole count command inside backquotes. In the Unix C-shell, this means to execute the
command that is backquoted, then put its output into the whole command line about to
be executed. Thus, we could do

to3d -fim ‘count -digits 3 -root 3D:-1:0:64:64:1:fred. 5 17

This is clumsy, but not as bad as typing all the 3D: prefixes for each file.

Finally, note that the program FD2 cannot read in 3D blocks of data. Each input file
must contain only 1 image. It can, however, use the 3D: prefix to properly skip arbitrary
header information before the actual image data is read. The F64 and F128 scripts in the
AFNI 1.04a distribution show how this can be done to trick the program into reading slices
out of a 3D block.

1.2 Reading a Number of Files, Method 2

If you have AFNI version 1.04a (or higher), then there is an easier way to customize the
input formats. It still uses the 3D: specifiers, so you need to understand those. The method
is to define a Unix environment variable to associate a 3D: specifier with a given file size.
For example,

setenv MCW _IMSIZE_1 8272=3D:-1:0:64:64:1:

means that a file whose length is 8272 bytes should be read with the string “3D:-1:0:64:64:1:”
attached before its filename. This will allow you to tell the AFNI programs how to deal
with your particular filesizes. You can use the environment variables MCW _IMSIZE_1 up
to MCW_IMSIZE_99. If this is done, then the command “FD2 fred.*” would work to read
the “fred.001” ... files described earlier.

The following shows the second form of an allowed MCW _IMSIZE environment variable:

setenv MCW _IMSIZE_2 %16096+80=3D:80:7904:64:64:

The “%” that starts the value signals that this is a variable length file type that can
contain more than one image. In this case, if the file length is of the form 16096*N+80 bytes,
where N=1,2...., then the string “3D:80:7904:64:64:N:” will be put before the filename. This
example allows the input of a 3D brick of images, each 2D image with a 7904 byte header,
and the whole collection with an 80 byte header at the very beginning.

